Hier finden Sie einen Überblcik über unsere wichtigsten Publikationen, Vorträge und Abschlussarbeiten.

Ausgewählte Publikationen

  • S. Mausenberger, C. Müller, A. Tkatchenko, P. Marquetand, L. González, J. Westermayr
    SpaiNN: equivariant message passing for excited-state nonadiabatic molecular dynamics.
    Chem. Sci. 2024, 15, 15880. DOI
  • R. Barrett, J. Westermayr
    Reinforcement Learning for Traversing Chemical Structure Space: Optimizing Transition States and Minimum Energy Paths of Molecules.
    J. Phys. Chem. Lett. 2024, 15, 349. DOI
  • T. Oestereich, R. Tonner-Zech, J. Westermayr
    Decoding energy decomposition analysis: Machine-learned Insights on the impact of the density functional on the bonding analysis.
    J. Comput. Chem. 2024, 45, 368. DOI
  • J. Westermayr, J. Gilkes, R. Barrett, R. J. Maurer
    High-throughput property-driven generative design of functional organic molecules.
    Nat. Comput. Sci. 2023, 3, 139. DOI
  • J. Westermayr, M. Gastegger, D. Vörös, L. Panzenboeck, F. Joerg, L. González, P. Marquetand
    Deep learning study of tyrosine reveals that roaming can lead to photodamage. 
    Nat. Chem. 2022, 14, 914. DOI

 

Unsere neuesten Vorabdrucke

  • R. Barrett, J. C. Dietschreit, J. Westermayr
    Incorporating Long-Range Interactions via the Multipole Expansion into Ground and Excited-State Molecular Simulations.
    arXiv: 2502.21045, 2025. DOI
  • S. Wesely, E. Hofer, R. Curth, S. Paryani, N. Mills, O. Ueberschär, J. Westermayr
    Artificial intelligence for objective assessment of acrobatic movements: How to apply machine learning for identifying tumbling elements in cheer sports.
    arXiv: 2503.04764, 2025. DOI
  • M. X. Tiefenbacher, B. Bachmair, C. Giuseppe Chen, J. Westermayr, P. Marquetand, J. C. B. Dietschreit, L. González
    Excited-state nonadiabatic dynamics in explicit solvent using machine learned interatomic potentials.
    arXiv: 2501.16974, 2025. DOI
  • R. Barrett, C. Ortner, J. Westermayr
    Transferable Machine Learning Potential X-MACE for Excited States using Integrated DeepSets.
    arXiv: 2502.12870, 2025. DOI
  • R. Barrett, J. Westermayr
    Actor-Critic Reinforcement Learning for the Search of Critical Points on Excited-State Potentials: Towards Rapid Identification of Conical Intersections.
    submitted, 2024.
  • T. S. Gutleb, R. Barrett, J. Westermayr, C. Ortner
    Parameterizing Intersecting Surfaces via Invariants. 
    arXiv: 1703.03864, 2024. DOI

Publikationen nach Jahr

  • R. Jacobs, D. Morgan, S. Attarian, J. Meng, C. Shen, Z. Wu, C. Yijia Xie, J. H. Yang, N. Artrith, B. Blaiszik, G. Ceder, K. Choudhary, G. Csanyi., E. Dogus Cubuk, B. Deng, R. Drautz, X. Fu, J. Godwin, V. Honavar, O. Isayev, A. Johansson, B. Kozinsky, S. Martiniani, S. Ping Ong, I. Poltavsky, K. J. Schmidt, S. Takamoto, A. P. Thompson, J. Westermayr, B. M. Wood
    A practical guide to machine learning interatomic potentials – Status and future.
    Curr. Opin. Solid State Mater. Sci. 2025, 35, 101214. DOI
  • S. Mausenberger, C. Müller, A. Tkatchenko, P. Marquetand, L. González, J. Westermayr
    SpaiNN: equivariant message passing for excited-state nonadiabatic molecular dynamics.
    Chem. Sci. 2024, 15, 15880. DOI
  • R. Barrett, J. Westermayr
    Reinforcement Learning for Traversing Chemical Structure Space: Optimizing Transition States and Minimum Energy Paths of Molecules.
    J. Phys. Chem. Lett. 2024, 15, 349. DOI
  • T. Oestereich, R. Tonner-Zech, J. Westermayr
    Decoding energy decomposition analysis: Machine-learned Insights on the impact of the density functional on the bonding analysis.
    J. Comput. Chem. 2024, 45, 368. DOI
  • W. G. Stark, J. Westermayr, O. A. Douglas-Gallardo, J. Gardner, S. Habershon, R. J. Maurer
    Machine Learning Interatomic Potentials for Reactive Hydrogen Dynamics at Metal Surfaces Based on Iterative Refinement of Reaction Probabilities.
    J. Chem. Phys. C 2023, 127, 24168. DOI
  • B. Mondal, J. Westermayr, R. Tonner-Zech
    Machine learning for accelerated bandgap prediction in strain-engineered quaternary III–V semiconductors.
    J. Chem. Phys. 2023, 159, 104702. DOI
  • J. Westermayr, J. Gilkes, R. Barrett, R. J. Maurer
    High-throughput property-driven generative design of functional organic molecules.
    Nat. Comput. Sci. 2023, 3, 139. DOI
  • K. Cseh, H. Geisler, K. Stanojkovska, J. Westermayr, P. Brunmayr, D. Wenisch, N. Gajic, M. Hejl, M. Schaier, G. Koellensperger, M. A. Jakupec, P. Marquetand, W. Kandioller
    Arene Variation of Highly Cytotoxic Tridentate Naphthoquinone-Based Ruthenium(II) Complexes and In-Depth In Vitro Studies.
    Pharmaceutics 2022, 14, 2466. DOI
  • J. Westermayr, S. Chaudhuri, A. Jeindl, O. T. Hofmann, R. J. Maurer
    Long-range dispersion-inclusive machine learning potentials for structure search and optimization of hybrid organic–inorganic interfaces.
    Digit. Discov. 2022, 1, 463. DOI
  • J. Westermayr, S. Chaudhuri, A. Jeindl, O. T. Hofmann, R. J. Maurer
    Long-range dispersion-inclusive machine learning potentials for structure search and optimization of hybrid organic–inorganic interfaces.
    Digit. Discov. 2022, 1, 463. DOI
  • J. Westermayr, M. Gastegger, D. Vörös, L. Panzenboeck, F. Joerg, L. González, P. Marquetand
    Deep learning study of tyrosine reveals that roaming can lead to photodamage. 
    Nat. Chem. 2022, 14, 914. DOI
  • B. Lier, P. Poliak, P. Marquetand, J. Westermayr, C. Oostenbrink
    BuRNN: Buffer Region Neural Network Approach for Polarizable-Embedding Neural Network/Molecular Mechanics Simulations.
    J. Phys. Chem. Lett. 2022, 13, 3812. DOI
  • J. Westermayr, R. J. Maurer
    Physically inspired deep learning of molecular excitations and photoemission spectra. 
    Chem. Sci. 2021, 12, 10755. DOI
  • J. Westermayr, M. Gastegger, K. T. Schütt, R. J. Maurer
    Perspective on integrating machine learning into computational chemistry and materials science.
    J. Chem. Phys. 2021, 154, 230903. DOI
  • H. Geisler, J. Westermayr, K. Cseh, D. Wenisch, V. Fuchs, S. Harringer, S. Plutzar, N. Gajic, M. Hejl, M. A. Jakupec, P. Marquetand, W. Kandioller
    Tridentate 3-Substituted Naphthoquinone Ruthenium Arene Complexes: Synthesis, Characterization, Aqueous Behavior, and Theoretical and Biological Studies.
    Inorg. Chem. 2021, 60, 9805. DOI
  • J. Westermayr, P. Marquetand
    Machine learning for electronically excited states of molecules. 
    Chem. Rev. 2021, 121, 9873. DOI
  • J. Westermayr, P. Marquetand
    Deep learning for UV absorption spectra with SchNarc: First steps toward transferability in chemical compound space.
    J. Chem. Phys. 2020, 153, 154112. DOI
  • J. Westermayr, P. Marquetand
    Machine learning and excited-state molecular dynamics. 
    Mach. Learn.: Sci. Technol. 2020, 1, 043001. DOI
  • J. Westermayr, M. Gastegger, P. Marquetand
    Combining SchNet and SHARC: The SchNarc machine learning approach for excited-state dynamics. 
    J. Phys. Chem. Lett. 2020, 11, 3828. DOI
  • J. Westermayr, F. A. Faber, A. S. Christensen, O. von Lilienfeld, P. Marquetand
    Neural networks and kernel ridge regression for excited states dynamics of CH2NH2+: From single-state to multi-state representations and multi-property machine learning models. 
    Mach. Learn.: Sci. Technol. 2020, 1, 025009. DOI
  • J. Westermayr, M. Gastegger, M. F. S. J. Menger, S. Mai, L. González, P. Marquetand
    Machine learning enables long time scale molecular photodynamics simulations. 
    Chem. Sci. 2019, 10, 8100. DOI
  • J. Westermayr, P. O. Dral, P. Marquetand
    Learning excited-state properties
    In: Quantum Chemistry in the Age of Machine Learning, Elsevier 2023. DOI
  • J. Westermayr, O. A. Douglas-Gallardo, S. M. Janke, R. J. Maurer
    Machine Learning Accelerated Nonadiabatic Dynamics at Metal Surfaces
    In: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier 2022. DOI
  • J. Westermayr, P. Marquetand
    Machine Learning for Nonadiabatic Molecular Dynamics 
    In: Machine Learning in Chemistry: The Impact of Artificial Intelligence, The Royal Society of Chemistry 2020. DOI

Das könnte Sie auch interessieren

Angezeigt wird Element 1 von 3

Aktuelles aus der Gruppe

mehr erfahren

Theoretische Chemie komplexer Materie

mehr erfahren

Wilhelm-Ostwald-Institut

mehr erfahren